Nomenclature

A systematic method of writing chemical formulas and naming compounds

III. Polyatomic Ionic nomenclature

- Polyatomic ions are groups of atoms covalently bonded together, that act as a single ion
- Think of them as lego blocks that have been glued together
- Each have a name and charge that must be memorized

Polyatomic ion examples...

• Nitrate: NO₃¹⁻

• bicarbonate: HCO₃¹⁻

Image source: wikipedia

Polyatomic ion examples...

• carbonate: CO₃²⁻

• acetate: $C_2H_3O_2^{1-}$ or CH_3COO-

(1+)	
Ammonium	NH_4^+
(1-)	
cyanide	CN-
hydroxide	OH-
cyanide	CN-
nitrate	NO ₃ -
chlorate	ClO ₃ -
hydrogen carbonate	HCO ₃ -
a.k.a. "bicarbonate"	
acetate	$C_2H_3O_2^{-1}$

(2-)	
sulfate	SO ₄ ²⁻
sulfite	SO ₃ ²⁻
carbonate	CO ₃ ²⁻
(3-)	
phosphate	PO ₄ ³⁻

These polyatomic ions must be memorized

These polyatomic ions may be used on worksheets but need not be memorized

III. Polyatomic Ionic nomenclature

- What type of bonding exists in polyatomic ionic compounds?
- **both** ionic and covalent!
- The polyatomic ion itself is held together by *covalent bonds*
- The individual cations and anions are held together by *ionic bonds*

a) Writing names

- Same as before:
- Write the name of the cation
- Write the name of the anion
- Simply write the polyatomic ion's name as it is, without any changes
- Still only two words in the name

NaNO₃

- More than two capital letters, so there must be at least one polyatomic ion in the formula
- Na is sodium, so...
- The entire "NO₃ part" must have a one word name:
- Nitrate is NO₃⁻
- sodium nitrate

 $Al_2(SO_4)_3$

- More than two capital letters, so there must be at least one polyatomic ion in the formula
- Al is aluminum, so...
- The entire SO₄ part must have a one word name:
- Sulfate (SO₄²⁻)
- aluminum sulfate

$(NH_4)_3PO_4$

- Obviously more than two elements
- Look for polyatomic ions
- the " NH_4 " part is ammonium (NH_4^+)
- the "PO₄" part is phosphate (PO_4^{3-})
- Ammonium phosphate

b) Writing formulas

- Follow the same rules as the other ionic compounds
- Iron(II) sulfate is
- Fe²⁺SO₄^{2−}
- > Charges balance, so formula is FeSO₄

b) Writing formulas

• Iron(III) sulfate is

≻Fe³⁺SO₄²⁻

Criss cross to balance charges

> But: we don't want Fe₂SO₄₃

➤There aren't 43 oxygens!

Use parentheses around polyatomic ion
Fe₂ (SO₄)₃

Write the formula for:

- Chromium(III) carbonate
- Cr^{3+} CO_3^{2-}
- Crisscross to balance charges
- Cr₂(CO₃)₃

Write the formula for:

- Magnesium hydroxide
- Mg²⁺ OH⁻
- Crisscross to balance charges
- Mg(OH)₂
- you need parentheses around the hydroxide because it is a polyatomic ion, even though it has no subscripts of it's own.

Now – the trickiest ones

- Name the formula
- FeSO₄
- Iron(IV) sulfate?
- No the subscript 4 is not from balancing charges!
- So, how do you know?
- Look for subscripts from balancing charges to "uncrisscross"

- If the 4 were from balancing charges, the formula would have parentheses around the SO – Fe(SO)₄
- There is no subscript on the Fe or on the SO₄ from balancing charges
- So, the charges are balanced
- Use the "SO₄" part to determine the charge on the iron sulfate has a 2- charge
- Iron(II) sulfate

Try these...

 cobalt(II) carbonate $Co_2(CO_3)_3$ cobalt(III) carbonate Fe(OH)₂ iron(II) hydroxide Fe(OH)₃ iron(III) hydroxide

CuNO₃

copper(I) nitrate

 $Cu(NO_3)_2$

copper(II) nitrate

 Cu_3PO_4

copper(I) phosphate

 $Cu_3(PO_4)_2$

copper(II) phosphate

Must be memorized...

- Ag⁺, Zn²⁺, no roman numeral when naming
- Sn, Pb get roman numerals when naming
- Cr, Mn, Sn, Pb the total negative charge must be determined to get the positive charge
 - Cannot "uncrisscross" these